Scald of Barley

Note Number: AG0765
Published: April 2007
Updated: July 2012

Mark McLean, Cereal Pathologist Barley

Scald is a common foliar disease in Victorian barley crops as the majority of current varieties are susceptible. Scald severity varies greatly from crop to crop depending on variety resistance, paddock history and local climate. Scald is more likely to be a problem when a susceptible barley variety is sown into infected stubble from a previous crop or when infected barley grass is present. Scald can be managed using an integrated approach that includes avoiding susceptible varieties, delaying early sowing, using seed dressings and not sowing into infected crop residues.

What to look for

The first signs of scald appear as water-soaked lesions on the leaf blades and sheaths. Lesions are ovate to irregular in shape, and change from a grey-green colour to a final straw colour with a distinctive brown margin (Figure 1). In severe infections, lesions coalesce and the pathogen may virtually defoliate the whole plant (Figure 2).

All of the above-ground parts of the plant except the upper stem can be infected, including the heads and grain which can be infected when rain occurs after ear emergence.

The symptoms of scald can be confused with similar symptoms caused by herbicide damage, nutrient deficiency or toxicity. Paddock history and the pattern of symptoms through the paddock should be considered to eliminate other factors which could cause scald-like symptoms.
Economic Importance

In Victoria, scald can cause yield losses of 10-20 per cent. Field experiments in the Wimmera region of Victoria during 2010 and 2011 showed grain yield losses of between 12 and 18 per cent where scald symptoms affected between 20-60 per cent leaf area of the top three leaves.

Disease cycle

The scald fungus (Rhynchosporium secalis) survives from one crop to the next predominantly on barley stubble and on barley grass. Though considered less important, the fungus can also survive on seed from heavily infected crops.

Early in the season, following the opening rains, spores are released from the stubble to infect early sown barley crops. The disease is usually first observed in isolated patches when plants are tillering. Further spread of the disease, within the crop, is by splash dispersal of the spores from one plant to another, and from old leaves to young leaves moving infection higher up the plant.

Serious damage is common in years of frequent rain, especially in the spring. By the end of the growing season the disease is usually evenly distributed within the crop.

The scald pathogen is pathogenically highly variable and able to change, which means that it often overcomes (or breaks down) the resistance in commercial varieties. It is therefore important to regularly consult a current Cereal Disease Guide (AG1160) to determine if previously resistant varieties have maintained their resistance.

Management

Scald can be effectively controlled using an integrated approach encompassing variety selection, cultural practices, time of sowing, seed treatment and foliar fungicides.

Resistant varieties

Growing resistant varieties is the best means of managing scald (Table 1). However, no resistant barley varieties are currently available. Several moderately susceptible barley varieties are available which can provide improved scald control compared to those rated as susceptible.

Additional management strategies, outlined below, may also be required when growing moderately susceptible varieties.

Table 1. Disease reaction of barley varieties to scald (Cereal Disease Guide AG1160)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Disease reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass</td>
<td>MS-S</td>
</tr>
<tr>
<td>Baudin</td>
<td>S-VS</td>
</tr>
<tr>
<td>Buloke</td>
<td>MS</td>
</tr>
</tbody>
</table>
Commander S
Fairview VS
Flagship MS
Fleet MS
Gairdner S-VS
Hindmarsh S-VS
Keel MS
NavigatorM MR#
Oxford MS-S#
Schooner MS
ScopeM MS-S
Sloop MS-S
WestminsterM MS
Wimmera MS-S
Yarra S-VS

R = resistant; MR = moderately resistant; MS = moderately susceptible; S = susceptible and VS = very susceptible. M Variety currently undergoing malting accreditation. # Varieties may be more susceptible of alternative strains present.

Cultural practices

Destroying infected stubble and barley grass by grazing, burning or cultivation can reduce the carry-over of the fungus between crops, but will not eliminate inoculum all together. Rotating barley with other crops can provide opportunity for stubble inoculum to breakdown and reduce subsequent infection. New, scald-free seed should be sourced if barley heads have been infected.

Time of sowing
Delaying sowing helps reduce the severity of scald as later sown crops often escape infection from the early spore release.

Seed and fertiliser treatments

Seed and fertiliser treatments suppress early scald infection and provide an effective means of delaying the onset of an epidemic. Additional foliar fungicides may need to be applied during the season if disease pressure is high.

Foliar fungicides

There are a range of foliar fungicides available that will provide suppression of scald. DPI experiments conducted during 2010 and 2011 showed that the best suppression of scald was achieved when foliar fungicides were applied between the beginning of stem elongation (GS 31) and flag leaf emergence (GS 39).

A single application of foliar fungicide may be insufficient to eliminate grain yield and quality loss. In some cases a two application strategy at both GS 31 and GS 39 may be warranted. Application of foliar fungicides at ear emergence (GS 50) are likely to provide reductions in losses, however this may not be economically viable.

Further Information

More detailed information can be obtained from the DPI Information Note Series: Grains, Pulses and Cereals

- Cereal Diseases Guide (AG1160)
- Victorian Winter Crop Summary
- The Decimal Growth Scale of Cereals (AG0013)
- Wallwork H (2000) Cereal Leaf and Stem Diseases. (Book) GRDC.

Contact/Services available from DEPI

DEPI Field Crop Pathology, Grains Innovation Park, 110 Natimuk Rd, Horsham 3400. Tel (03) 5362 2111, or the DEPI Customer Service Centre 136 186.

Acknowledgements

This Information Note (AG0765) was developed by Mark Mclean and Grant Hollaway in April 2006. It was reviewed by Frank Henry, Farm Services Victoria. Financial support by the GRDC is gratefully acknowledged.

Last updated July 2012

ISSN 1329-8062

Published and Authorised by:
Department of Environment and Primary Industries
1 Spring Street
Melbourne, Victoria
The advice provided in this publication is intended as a source of information only. Always read the label before using any of the products mentioned. The State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

For information about DEDJTR, Phone: 136 186

Deaf, or hearing or speech impaired?
National Relay Service: 133 677
or www.relayservice.com.au

Victorian Bushfire Information Line: 1800 240 667

Following changes to the Victorian Government structure, the content on this site is in transition. There may be references to previous departments, these are being updated. Please call 136 186 to clarify any specific information.