Mobility Profiles for Local Areas: Developing an Interactive Decision-Making Tool for Urban Design, Transport and Accessibility Improvements in Melbourne’s Activity Centres

Jan Scheurer, Australian Housing and Urban Research Institute (AHURI), RMIT University
David Mayes, Australian Institute of Urban Studies (AIUS), Victoria

Abstract
The Melbourne 2030 metropolitan strategy nominates the shift of car trips to public transport, walking and cycling, and the consolidation and densification of activity centres as key policy goals (DOI, 2002). This integration of urban design, land development and transport planning reverberates at the local government level, where many councils have struggled to reconcile the competing interests of development pressures, public space quality and the inherent contradictions of state government transport policies that still fail to convey clear priorities in favour of sustainable transport modes.

The Transport, Accessibility and Mobility Indicators (TAMI) pilot project has been developed in close collaboration with seven local councils, using selected activity centres on their territories as case studies. Reviewing and building on national and international best practice at measuring sustainability performance in the field of transport, accessibility and mobility, the project delivers tools to help decision-makers at the local level to better understand the transport and urban design strengths and shortfalls of their activity centres, and to use this data as input for strategic planning tasks along the Melbourne 2030 principles.

This paper introduces the suite of local area indicators compiled during the TAMI pilot project in 2006-07 and reflect on the opportunities and barriers encountered in their application to the local planning process.

Introduction: Accessibility and Activity Centre Planning
The movement of people and goods within cities has always been a significant determinant of urban form, and of the coincidence and correlation between economic, social and cultural processes in urban systems. While technological progress, economic development and individual consumer choice have traditionally been accepted as the key drivers of urban mobility needs and the transport systems devised to satisfy such needs, the influence of the sustainability agenda on policy making in recent years has demanded, and provided, new perspectives on the role of traffic and transport in cities (Newman and Kenworthy, 1999; Davison, 2004; Davison, 2006).

This paper employs the three terms of transport, accessibility and mobility in its title, each of which has come to be associated with a different such perspective on the overall context of physical movement in cities. The concept of transport is still largely used to describe the cumulative phenomenon of people and goods overcoming spatial distance. Transport growth was once embraced as an inevitable consequence of increasing economic activity and prosperity, and cities attempted to prepare themselves for this growth by generous programs of infrastructure expansion and decentralisation of urban functions (Banister, 2002). More recently, the phenomena of transport capacity constraints and resultant system congestion and unreliability have become more prominent factors in transport policy debates, accompanied by an emerging consensus that such constraints cannot effectively be resolved by continued physical expansion of transport networks alone (Goodwin, 1997).
The term *mobility* is more specific: it describes the transport effort associated with particular activities in time and space and therefore introduces a user perspective on the issue (Litman, 2003). In an Australian context, mobility has long been equated with motorised or car mobility. However, recent usage of the term particularly in multi-lingual Europe clearly incorporates movement by all transport modes, including walking and cycling. The concept of mobility inherently raises a question of efficiency: how much travel does each activity require? In this context, a reduction of mobility and its associated consumption of energy and time, while maintaining access to activities constant for the transport user, is a popular sustainability target.

Accessibility can be considered the most complex of the three concepts, as it captures a link between transport and land use. The accessibility of a particular place in the urban system is determined not only by the transport links leading to it, but also by the concentration and diversity of activities available at the location (Bertolini and Dijst, 2003). Furthermore, accessibility is interested in the motivations of people (and businesses) to undertake a particular activity, and to afford it a particular budget in terms of travel time and cost (Geurs and Van Eck, 2001).

Sustainable transport policy is generally guided by the goal of attempting to stabilise or reduce the use of the car, which is seen as a resource-intensive transport mode, and to strengthen the role of walking, cycling and public transport in cities, which are seen as supportive to targets of social and community wellbeing, public health and resource efficiency (Newman and Kenworthy, 1999; Low et al, 2005). Sustainable urban planning has long embraced the concept of concentrating a range of activities into multifunctional precincts that are easy to get to by public transport and cycling, and easy to get around in as a pedestrian (Bernick and Cervero, 1997; Cervero, 1998). In Melbourne, both these premises have informed the current metropolitan strategy, Melbourne 2030: the document contains a mode share target to increase public transport and non-motorised mobility at the expense of car mobility, and advocates the consolidation of more than a hundred specific activity centres throughout the metropolitan area (DOI, 2002).

In detail, Melbourne 2030 stipulates:

- that 20% of all *motorised* trips in the metropolitan area are taken by public transport modes in 2020, up from a baseline of 9% in 2001 (DSE, 2002),
- that 60% of all trips in the metropolitan area are taken by car in 2020, down from a baseline of 74% in 2001 (DSE, 2002),
- that 41% of residential development occurs in activity centres and major redevelopment sites between 2001 and 2030, up from a trend of 24% in 2001 (DSE, 2004).

The first two targets imply is an anticipated increase in non-motorised trips over all trips from 19% in 2001 to 25% in 2020. The third target implies that Melbourne’s activity centres and major redevelopment sites should absorb a growth in housing units of approximately 260,000, rather than 150,000 on previous trends, over a 30-year period (Buxton and Scheurer, 2005).

These two objectives, if taken seriously, introduce a strong nexus for policy making in both the transport and land use planning arena, a nexus that makes itself felt with most urgency in local areas. Melbourne’s activity centres are where many of the sub-strategic decisions relevant to the performance of the Melbourne 2030 targets are made, and in most cases, such decisions involve local councils. Hence, it is the local level of government whose policy priorities bear some of the greatest influence on the degree of success or failure of the metropolitan strategy. The scale, form and function of land use redevelopment, the priorities afforded to parking and moving traffic, walking and cycling, public transport access and stationary activities in public spaces, and the quality of urban design in activity centres are all areas largely or fully within the planning authority of local governments. Yet, to date there remains a paucity of knowledge regarding the comparative performance
of activity centres in terms of transport access and mobility generation, and regarding the
identification and dissemination of best-practice solutions at a local level within a context
that is relevant to Melbourne’s policy environment. Many local councils expressed
difficulties making well-informed policy decisions affecting mobility and accessibility in
their activity centres, particularly in the face of continuing strong development pressure
and mounting perceived traffic problems in many places, and the inherently slow process
of elaborating comprehensive local area structure plans to provide guidance for their
future.

The TAMI Project

The Transport, Accessibility and Mobility Indicators (TAMI) project has been initiated to
assist local councils and other stakeholders with the generation of a knowledge base to
inform the process of transport, accessibility and mobility policy making in the context of
local area structure planning, a procedure encouraged by the Melbourne 2030 framework.
The pilot project, conducted in 2006-07 in seven selected activity centres across the
metropolitan area, forms the first stage of an Australian Institute of Urban Studies (AIUS)-
led approach to establish a program of ongoing monitoring and reporting of local transport,
accessibility and mobility indicators. For all parties with an interest in sustainable
transport, it is envisaged that this indicator reporting will significantly improve the
understanding of what is happening in transport policy across Melbourne, what the critical
issues are at the local level, and how these fit into the bigger regional and metropolitan
perspective. It will help policy makers to check and review the effectiveness of their
policies and provide an added impetus to achieving a more sustainable and a more
inTEGRATED system of urban transport and mobility across all local areas in metropolitan
Melbourne.

The project is a partnership of state and local governments and the Victorian Local
Governance Association (VLGA), with AIUS as the catalyst agency. In February 2005, AIUS
commenced a round of consultative discussions with government and other stakeholders in
transport and mobility policy in metropolitan Melbourne about the possibility of an ongoing
program of reporting on local transport indicators. The idea for the initiative came from
the Environmental Indicators for Metropolitan Melbourne program, which AIUS has run
since 1998 in an annual collaborative partnership with the City of Melbourne, other local
governments and State government agencies (AIUS and City of Melbourne, 2005).

Since 1995, when the 31 local government authorities across metropolitan Melbourne were
established, there has been a gradual development of a new generation of local transport
and mobility policies. These have shifted away from the more traditional local government
focus of roads to a broader awareness of all modes of travel, and also of the symbiotic
relationship between transport policy and land use policy. By 2006, fourteen of the thirty-
one metropolitan councils had completed Integrated Transport Plans (ITP). Most other
councils subscribe to the concept of sustainable transport and have in place some elements
of an ITP such as a Bike Plan.

These new local transport policies are typically future-oriented. They embrace a long-term
sustainability perspective with a local focus, but also with an eye on the global picture.
They aim to work in partnership with state government, particularly in areas like rail-based
public transport, main roads and travel behaviour. They frame desired outcomes in terms

of the needs of people rather than engineering imperatives. They recognise that transport
and mobility issues cross municipal boundaries and often require a regional or metropolitan
perspective. Where their jurisdiction allows, these policies position councils to actively
and strategically manage some of the significant challenges of urban mobility over the
immediate and long term. Beyond councils’ jurisdiction, they provide a platform to lobby
and partner with other agencies on behalf of their citizens.

Councils also have general, legislated commitments to regular monitoring and public
reporting on the status of their strategies for achieving strategic objectives. These are
measured against nominated targets and performance measures. In the area of sustainable transport, this is a significant challenge. Regular reporting even on relatively straightforward issues requires concerted corporate discipline, but the task is made even more difficult in the case of transport, accessibility and mobility, where councils have to work with:

- complex interactions between the multiple modes of urban transport,
- a diversity of authorities, companies and other organisations with interdependent and overlapping responsibilities in urban mobility,
- the changing physical and demographic urban landscape, particularly in growth areas, and
- the many (and sometimes contradictory) perceptions and expectations of citizens and visitors.

Also, developing and implementing a regular process of reporting with meaningful and sophisticated indicators is a resource-intensive process. For each of the 31 metropolitan councils to do this independently is expensive and, for some councils, unaffordable. By pooling their resources in a collaborative program, a high-quality and regular indicator reporting process becomes possible for each and every council.

In summary, transport, accessibility and mobility indicator reporting against state and local government policy objectives for the metro Melbourne region has so far been limited to the more narrow and specialised needs of particular sectors and government organisations. This project attempts to deliver a more integrated and comprehensive perspective:

- that captures the diversity of local characteristics, and their geographical and demographic variations,
- that takes account of the mobility conditions as users perceive (and respond to) them,
- that takes account of specific mobility profiles in local areas,
- that defines the links and correlation between mobility conditions and other fields of sustainability, and
- that enables Councils to pool resources to achieve a high quality outcome at low cost.

Seven Case Study Areas: Methodological Approach and Findings

How can progress towards the Melbourne 2030 targets be measured and monitored at the level of activity centres? The metropolitan strategy implies a vision of activity centres as places of greater built and human density, greater diversity of activities, generating a greater share of trips to and from them by residents, employees and visitors alike on public transport and non-motorised modes at the expense of the car. In practice, the transformation envisioned in these goals leads to a range of policy challenges on the ground. It calls into question the present allocation of road space and other public space between different modes of transport, namely pedestrians, cyclists, motorists, public transport facilities and reservations, and parking for vehicles and bicycles. It incurs anticipated changes to private land uses, with formidable stakeholder conflicts emerging over proposals for high-rise residential or commercial development, particularly in heritage-sensitive areas. It calls for a new balance between building uses and the extent of parking facilities considered necessary to service them. It points at the need to substantially expand and upgrade public transport infrastructure and service to accommodate the anticipated increases in patronage, within an institutional environment that has not been capable (or even set up) to deliver improvements of such magnitude for
several decades (Scheurer et al, 2005; Mees et al, 2006). Most saliently, it calls for policy packages that are tailored specifically to the characteristics of each activity centre, and its users: Activity centres across Melbourne differ in their potential to grow and how to grow, and what demographic and lifestyle groups to attract as residents, employees or visitors.

To obtain a relatively diverse spectrum of activity centres in this context, TAMI has focussed on seven case study areas in its pilot phase. Five of these case study areas were the subject of urban design studios in the Landscape Architecture program at RMIT University in 2005 and 2006, when much of the data was collected by students in a local area context analysis exercise. These study areas are:

- Smith Street-Collingwood (City of Yarra), an inner suburban, tram-based retail, hospitality and entertainment strip within a Victorian-era medium-density, mixed-use environment, where there is currently a rapid trend of conversion of older manufacturing uses to residences and creative industries.

- Northcote (City of Darebin), an inner-middle suburban, mixed-use activity centre consisting of a Victorian-era main street and two adjacent enclosed shopping malls, with spatially separated rail and tram access.

- Reservoir (City of Darebin), an outer-middle suburban activity centre largely developed during the inter-war and early post-war era, focussed on a rail station amidst a road-rail corridor with strong severance effects.

- Moonee Ponds (City of Moonee Valley), a middle suburban centre with a main street connecting a rail station and a tram-bus interchange, surrounded by a patchwork of shopping malls, some large-scale office uses, a civic centre, residential development from Victorian terraces to recent high-rise buildings, and parking facilities on transitional land.

- Highpoint (City of Maribyrnong), one of Melbourne’s largest enclosed shopping malls, surrounded by extensive ground-level parking facilities and located in a traditionally industrial middle suburban area which is subject to a gradual transformation towards medium-density housing pods.

The remaining two case study areas (Frankston and Bundoora RMIT) were of interest to the project because they are part of the State Government’s Transit Cities program (Frankston), with a separate database collated by State Government, and because they offered an opportunity to apply the set of indicators to a Greenfield site at the urban fringe (Bundoora), which is currently developed from a loose agglomeration of university buildings into a mixed-use town centre.

Descriptive Indicators

The first step to capture the transport, accessibility and mobility conditions in the case study activity centres was to collate land use and access profiles from existing data sources, as well as on-site observation and surveys. A methodology was devised to define the walkable catchment area of each activity centre, based on a combination of 800-metre radii around rail stations and 400-metre radii around tram corridors and bus stations with some adjustments for barriers in the urban fabric, and the boundaries of Census Collection Districts (Scheurer, Mayes and Raimondo, 2007). These catchment areas became the basis for a collection of census data, public transport service levels, and land use, business use and parking information. These indicators can be regarded as descriptive indicators, since their collection occurs by way of standardised procedures and relies on widely published data from other sources (such as the census), or circumstances on the ground that can be objectively verified through on-site observation.
Figure 1 shows an example of catchment area and activity centre definition, taking in rail lines and stations (blue), tram corridors within the activity centre (green) and Census Collection Districts (mauve).

Figures 2-5 show an overview of four census-derived indicators across the seven case study areas, namely population numbers and density, dwelling numbers and breakdown, modal split for the journey to work (by residents) and motor vehicle ownership in households.
Figures 6-8 show examples of the maps collated for each of the seven case study activity centres from an on-site land use, business use and parking survey.
Figure 8

Figure 9 shows an example of a local area public transport map, showing train routes and stations (blue), tram routes and stops within the catchment area (green), and two levels of bus services: full-service routes (dark orange) and partial-service routes (light orange). Full-service routes are defined as routes that operate at least every 30 minutes during the daytime, seven days a week, and also offer some evening service. Partial-service routes fall short of this standard.

Figure 9

Interpretive Indicators

Valuable as it might be, particularly where a similar range of localised information has not been previously available in an accessible format, a compilation of descriptive indicators alone does not yet meet the function of a policy-assisting tool envisioned in the TAMI project. In order to develop such a tool, more specific directions have to be provided in relation to how this data can generate new knowledge, and how this knowledge can be presented to enhance understanding of and communication about the policy context. In other words, it is the interpretation of descriptive information that determines an
indicator’s relevance for its intended application. Such intent invariably contains a
judgment on the part of the interpreter, who decides about the importance of a particular
piece of data, or correlation of data, while discarding others. Interpretive indicators
therefore need to be carefully documented and continuously negotiated with the users and
beneficiaries of the information, keeping in mind that there is no inherently correct or
incorrect way of constructing them. Hence, it is also desirable to enable users of the
information to construct their own interpretive indicators, by building up from the
descriptive indicators provided.

In many cases, interpretive indicators are correlations between descriptive indicators that
allow for comparability between activity centres to more accurately identify their relative
strengths or weaknesses in terms of transport sustainability. Figures 10-12 show three
eamples. In Figure 10, relative public transport service quality has been interpreted as
the number of departures per hour from the activity centre, weighted by transport mode.
The weighting has been derived from the ratio between the average load factor of trains,
trams and buses across metropolitan Melbourne (Kenworthy and Laube, 2001). According to
these figures, a tram carries on average three times as many passengers as a bus, and a
train thirteen times as many. The two descriptive indicators used here are the number of
departures per hour per mode (available from widely disseminated timetabling
information) and the average number of passengers per vehicle (collated by the public
transport operators).

Figure 11 shows a network connectivity index that is intended to illustrate the number of
route choices for pedestrians and other road users. This indicator contains assumptions
about the extent of the network that is useable for a broad range of pedestrians,
considering factors such as disabled access, personal security after dark and safety when
crossing heavily traffic roads. The numeric measure - weighted intersections per square km
- allocate a value to each intersection equivalent to the number of links converging in it
less two, and then adds up the total number of intersections per unit of area. A higher
measure usually indicates better accessibility of the area for pedestrians, and there are a
range of possible interventions to increase the score, such as the creation of additional
links or crossing points, or amenity upgrades of existing laneways.

Figure 12 shows an indicator known as pedshed, which uses the same assumptions about
the pedestrian network as the connectivity index. It assesses the extent of the nominal
400/800-metre catchment of the activity centre that can actually be accessed by walking
400 metres or less from a tram corridor or bus station, or 800 metres or less from a train
station along the actual pedestrian network. Usually, an interconnected network with high route density will result in a high value for this indicator. Again, strategic interventions into the pedestrian network can be tested for their effectiveness by using this tool.

Both indicators have been developed and used extensively in the context of local area urban design assessments (Bentley et al, 1985; ISTP et al, 2007).

![Map by Lisa Raimondo](image1)

Composite Indicators

Interpretive indicators are suitable for monitoring the impact of specific interventions into transport and accessibility conditions in local areas, such as public transport service changes, modifications to the movement network, urban design improvements in the context of redevelopment etc. However, they do not yet capture the cumulative impact of a package of measures, as the result of concurrent interventions in several areas, or of a range of gradual, possibly uncoordinated changes and trends over time. To arrive at valid measures for the more complex reality of such processes, or to evaluate comprehensive scenarios of transformation, it is useful to develop **composite indicators**. Composite indicators, also known as **indexes** in the literature (Gudmundsson, 2001), are usually based...
on more than two descriptive and/or interpretive indicators, often from different and not immediately related areas.

Figure 13 provides an example: this indicator attempts to define the isochrone (yellow) and count the number of residents within the effective 30-minute catchment area of full-service public transport routes (trains in blue, trams in green, buses in orange) converging within the activity centre in question (red). It combines the accessibility of public transport within the activity centre (access time), the speed of the service (travel time), the physical and timetable coordination with other public transport services outside the activity centre (transfer time), and the concentration and density of residents within the resulting catchment area (land use). Modifications to any one of these component indicators, or to several of them, by suitably targeted policy interventions will change the values of the composite indicator. Composite indicators can thus capture and compare the impacts of alternative policy scenarios: in this example, the relative impact of concrete proposals to expand the 30-minute catchment by improving local access to public transport stops, by increasing service frequencies, by reducing scheduled travel time, by inserting new or better coordinated transfer facilities to other routes, or by increasing residential density in the existing catchment area can be measured separately or in any combination.

Limitations, Opportunities, Lessons Learned and Outlook

The TAMI pilot project set out to develop a practical and effective implementation plan for the proposed indicator program. Its aims were to develop a set of transport, accessibility and mobility indicators that are simple, policy relevant, valid, based on time series data, based on accessible data, based on affordable data, and capable of being aggregated to be relevant to broader regional and metropolitan issues. It was intended to test the program plan and the indicators that have been developed with seven metropolitan Melbourne councils as typical case studies, representing different locational settings across the metropolitan area.

How well have these aims been achieved? The project was instigated in close collaboration with the seven councils involved, the Victorian Local Governance Association (VLGA) and other institutional stakeholders such as the Department of Infrastructure (DOI) and the Department of Sustainability and Environment (DSE). The focus on local activity centres was a direct result of these early discussions: Many local councils perceived themselves under considerable pressure to make rapid progress on the elaboration of comprehensive

245
structure planning for their central areas to fit the strategic directions stipulated by Melbourne 2030. There was a clear gap in detailed and useful knowledge about the some of the basic functional characteristics of these activity centres: with the notable exception of the City of Melbourne who conduct a regular survey in this context (City of Melbourne, 2007), the information about land use patterns, business uses and parking management available to councils proved to be patchy. Where such information existed, it usually originated from topical, one-off surveys or studies commissioned by individual councils, whose compatibility towards a comprehensive profile of the activity centre was limited by varying geographical definitions and survey years, and whose comparability with other sites almost inevitably suffers from grave differences in scope and methodology. Streamlining a set of common demographic, land use and transport indicators into a common format was heralded as a significant step that would assist councils to collaborate on activity centre and accessibility planning, through joint policy initiatives and State Government programs such as TravelSmart, as well as through organisations such as the VLGA, the Metropolitan Transport Forum (MTF) or even through largely informal professional associations such as PedBikeTrans.

The other important role of TAMI has been to play a part in the dissemination of a broader perspective on transport sustainability, manifest in an ongoing policy debate in Melbourne (and beyond) that has called a number of orthodoxies of conventional transport planning into question. In particular, perceptions about the significance and quality of public transport in Melbourne have clearly begun to shift in professional circles (not to mention the general public), following the work of Mees (2000), the Public Transport Users Association (2002), the Metropolitan Transport Forum (Scheurer et al, 2005; Scheurer et al, 2006), and more recently State Government-commissioned reports such as VCEC (2007) and CES (2007). The TAMI project provided an opportunity for councils to assess and quantify the deficits in public transport access and service to and from their activity centres, and learn about best-practice solutions in Melbourne and elsewhere to address them.

In the process of data collection, a number of difficulties were encountered that point at shortfalls in data availability as well as capacity challenges to future endeavours in the TAMI mould. Since the Census only contains journey-to-work data, it would have been interesting to obtain reliable information about travel to and from the case study areas for other trip purposes as well. A number of general travel surveys were conducted by State Government in the past, including the Victorian Activities and Travel Survey (VATS), and more are planned for the future. However, the sample sizes of these surveys do not allow for a valid disaggregation of data to the level of an activity centre. It is not clear whether this constraint can be overcome in the future without a disproportionate outlay of resources by the agency conducting the survey.

Monitoring of public transport usage in Melbourne is currently very patchy. Nominally, passengers are required to validate their ticket at each station entry or vehicle boarding; in practice however, the rate at which this occurs is insufficient to arrive at meaningful figures for public transport boardings in most activity centres. This is exacerbated by the fact that validation machines fitted on trams and buses can only be traced to the route number and direction, but not to specific geographical locations such as activity centres along the route. A new ticketing system based on SmartCard technology will be introduced throughout Victoria from late 2007, and given that it will scan and geographically position each passenger at both entry and exit from the system, it should theoretically deliver much more comprehensive and detailed usage data for public transport. It is not clear, however, whether compliance rates with the validation procedures will improve significantly upon introduction of the new system, particularly on crowded tram and bus services in uncontrolled station environments.

Several councils reported difficulties to obtain detailed road usage data from State Government sources at affordable costs. While intersection usage is widely electronically monitored for traffic management purposes, the resulting data is not consistently kept on record, or readily divulged to other users by VicRoads. Traffic volume counts are
undertaken along cross-sections of main roads on a regular basis; however, the technology used (pressure-sensitive cables across the roadway) cannot be laid across tram tracks in mixed traffic. This appears to result in a shortage of traffic volume data on such road segments, which are often located in activity centres.

Lastly, the on-site surveys undertaken for the project were greatly facilitated by the integration of TAMI with urban design teaching at RMIT University, involving undergraduate students collecting much of the land use, business use, parking management and pedestrian realm quality data to inform their studio projects. But despite this synergy, most sites had to be revisited by the research team to ensure the completeness and compatibility of the information compiled. It is questionable whether the extent of data collection presented in the TAMI pilot project could viably be undertaken if it was solely the task of paid researchers. Future stages of the project may thus need to look at opportunities to condense the site surveys into a more manageable format.

Conclusion

The TAMI project can be seen as part of an emerging trend in Australian research to develop practical indicators and communication tools that capture the integration of land use and transport characteristics in a holistic manner, and link them to a broader sustainability perspective. Other examples in this context include the work of Cheal (2003) on transit-rich and transit-poor suburbs in Melbourne, the work of Dodson and Sipe (2006) attempting to rank census collection districts by linking urban location and accessibility to socioeconomic and fuel price vulnerability in various Australian cities, and the work of Pitot et al (2006) developing a city-wide land use and public transport indicator (LUPTAI) to identify public transport service deficiencies and land use intensification potential in the Gold Coast. TAMI is the first example of a metropolitan-wide indicator system that is designed for use by local governments and local stakeholders by focussing on transport, mobility and accessibility indicators specific to the policy tasks in local activity centres and related to the strategic targets regarding mode shift and urban intensification in Melbourne 2030.

Acknowledgement

The authors gratefully acknowledge the financial contributions of the Cities of Darebin, Frankston, Maribyrnong, Melbourne, Moonee Valley, Whittlesea and Yarra, and the Department of Infrastructure towards this research. We are also indebted to Lisa Raimondo, Annette Kroen and the participants of the Thrash and intenCity studios in the Landscape Architecture program at RMIT University, for the collection of data for this project.

References

Commissioner for Environmental Sustainability (CES, 2007) Creating a City that Works. Department of Sustainability and Environment (DSE), Melbourne (VIC), May

Dodson J, Sipe N (2006) Shocking the Suburbs: Urban Location, Housing Debt and Oil Vulnerability in the Australian City. Griffith University, Urban Research Program, Brisbane (QLD)

Goodwin P B (1997) Solving Congestion (when we must not build roads, increase spending, lose votes, damage the economy or harm the environment, and will never find equilibrium). Inaugural Lecture for the Professorship of Transport Policy, University College London, UK

Institute of Sustainability and Technology Policy (ISTP), Department of Planning and Infrastructure (DPI), Mirvac Fini (2007) Sustainable Urban Design - Practical Fieldwork Project 2007. Learning How to Produce More Liveable Environments. Perth (WA)

Pitot M, Yigitcanlar T, Sipe N, Evans R (2006) Land Use and Public Transport Accessibility Index (LUPTAI) Tool - The Development and Pilot Application of LUPTAI for the Gold Coast. 29th Australasian Transport Research Forum (ATRF), Gold Coast (QLD), September

Public Transport Users Association (PTUA, 2002) It’s Time to Move. Melbourne (VIC)

Scheurer J, Mayes D, Raimondo L (2007, forthcoming) Local Area Transport, Accessibility and Mobility Indicators in Metropolitan Melbourne. AIUS, VLGA, AHURI, Cities of Darebin, Frankston, Maribyrnong, Melbourne, Moonee Valley, Whittlesea and Yarra, Melbourne (VIC)