Person

Graham L. Morrison

Alternate Name:
Graham Lindsay Morrison
Journal article

A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications

Solar heating and cooling (SHC) systems are currently under rapid development and deployment due to their potential to reduce the use of fossil fuel resources and to alleviate greenhouse gas emissions in the building sector – a sector which is responsible for ~40% of the...
Journal article

Solar-assisted absorption air-conditioning systems in buildings: control strategies and operational modes

Solar-assisted cooling technology has enormous potential for air-conditioning applications since both solar energy supply and cooling energy demand are well correlated. Unfortunately, market uptake of solar cooling technologies has been slow due to the high capital cost and limited design/operational experience. In the present work...
Journal article

A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications

The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based on combining three types of LiBr-H2O absorption chillers (single-, double-, and triple-effect) with common solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated tube collectors...
Journal article

Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: an energetic, economic and environmental (3E) assessment

This paper presents energetic, economic, and environmental (3E) analyses of four configurations of solar heating and cooling (SHC) systems based on coupling evacuated tube collectors with a single-effect LiBre-H2O absorption chiller. In the first configuration (SHC1), a gas-fired heater is used as the back-up system...
Journal article

Multi-objective optimization of a solar-powered triple-effect absorption chiller for air-conditioning applications

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used...