A methodological framework to assess the thermal performance of green infrastructure through airborne remote sensing

Carlos Bartesaghi Koca,b *, Paul Osmonda,b, Alan Petersa, Matthias Irger

aFaculty of Built Environment - UNSW, Sydney NSW 2052, Australia
bCRC for Low Carbon Living Ltd., Tyree Energy Technologies Building - UNSW, Sydney NSW 2052, Australia

Abstract

This paper presents a methodological framework for a more accurate assessment of the thermal performance of green infrastructure (GI) using a combination of airborne remote sensing, field measurements and numerical modelling. The proposed framework consists of: (a) controlling intervening variables and classifying sites according to urban morphology, (b) classifying GI according to a newly developed typology, (c) quantifying and allocating a set of indicators/metrics to each typology, and (d) analysing and comparing data spatially and statistically. The proposed framework provides a standardised protocol that urban planners and practitioners can apply to quantify, compare and report the results of microclimate studies.

Keywords: Urban heat island; green infrastructure typology; local climate zones; urban microclimate; remote sensing; evapotranspiration.

1. Introduction

It has been demonstrated that an increment of vegetation cover corresponds with a reduction of land surface temperature (LST) and the attenuation of the surface urban heat island (SUHI) [1, 2]. Remote sensing has been commonly employed to investigate the cooling effects of green infrastructure (GI) because large areas can be

* Corresponding author. Tel.: +61 (02) 9385 5023; Mob.: +61 (0) 450 861 020.
E-mail address: c.bartesaghioc@unsw.edu.au
monitored and analysed simultaneously and continuously [1, 3–5]. However, it mainly focuses on surface temperature rather than air temperature, whereas the latter is more related to human thermal comfort [4, 5]. Numerous studies have analysed the influence of spatial patterns, amount of vegetation and impervious surface fractions on LST [6–12] while others have focused on the extent and spatial variability of urban cool islands [13–17] and park cool islands [18–21]. Overall, most previous work has been conducted at city-wide level, and little at very fine scales.

However, there is still little guidance on the most effective composition, amount and arrangement of GI required to provide maximum cooling effects [4, 22]. There is an urgent necessity for tools to inform policy development and support urban planners and designers on the strategic implementation of GI for heat mitigation [2, 4]. This paper responds to this gap and presents a methodological framework for a more precise and comprehensive assessment of the thermal performance of GI at high spatial resolution by integrating airborne remote sensing, ground-based measurements and numerical modelling. This framework draws on the theoretical and methodological approaches of multiple disciplines and builds on previous guidelines published by Coutts et al. [2, 23], Harris et al. [4], and Irger [24]. The purposes of developing this framework are: (a) to identify a list of functional, morphological and configurational indicators/metrics to quantify the cooling effects of GI in a more comprehensive way; (b) to combine empirical observations and predictive methods; and (c) to propose a standardised workflow that makes use of readily accessible data and is replicable by researchers, practitioners and urban planners.

2. Methodology

This paper is based on a systematic literature review of 66 studies (from 2010 onwards) that reported on the cooling effects of GI using remote sensing. Publications were systematically analysed to evaluate current methodologies, identify indicators, and verify the type and quality of data sources and instruments. Relevant information was identified to formulate a new methodological framework to tackle the shortcomings and gaps identified in current research. The selected studies met the following inclusion criteria:

- Studies were peer-reviewed and written in English.
- Studies reported on the thermal benefits of GI by comparing climatological conditions (dependent variables) against measurable characteristics or metrics of GI (independent variables) at different spatial scales.
- Studies used remote sensing solely or in combination with other methods.
- Studies assessed any form of vegetation (green open spaces, trees, green roofs, etc.) and/or water bodies.

3. Overview of recent studies

3.1. Key parameters of investigation

Remotely-sensed studies have investigated the relationships between surface/air temperatures (dependent variables) and independent variables corresponding to functional, morphological and configurational attributes of GI [25]. They have also quantified the magnitude of the contribution of GI-derived variables on dependent variables. These relationships can be influenced by intervening variables derived from either climatological or morphological aspects. Table 1 presents a detailed list of key dependent, independent and intervening variables from the literature.

3.2. Data sources and data acquisition

Remotely sensed thermal infrared (TIR) data has been extensively employed to determine the extent and magnitude of SUHI [4, 5]. Compared to ground-based monitoring, TIR imagery enables a synchronised capture of radiant surface temperatures over large areas [4, 5, 24]. An accurate estimation of LST requires corrections for emissivity and atmospheric effects (upward emission, absorption and downward irradiance) [5]. However, emissivity values vary among surfaces (concrete, roof tiles, grass, and metal) and depend on factors such as roughness, structure, chemical composition or water content [5]. Therefore, the correction assuming a uniform
emissivity value is inappropriate, so estimations are required for each surface type which are highly laborious [2, 4, 5, 23, 26–31]. Techniques for emissivity correction have been summarised by Weng et al. [5, 31].

Table 1. List of commonly measured dependent, independent and intervening variables. DEP. Dependent, IND. Independent INT. Intervening.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Common indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP. Climatological</td>
<td>- Surface temperature (Tsurf)</td>
<td>- Air temperature (Tair)</td>
</tr>
<tr>
<td>IND. Functional</td>
<td>- Vegetation indices (NDVI, EVI)</td>
<td>- Normalised difference water index (NDWI)</td>
</tr>
<tr>
<td>Morphological</td>
<td>- Land-use/land-covers (LULC)</td>
<td>- Surface emissivity (ε)</td>
</tr>
<tr>
<td></td>
<td>- Vegetation, impervious, building and water fractions</td>
<td>- Surface albedo</td>
</tr>
<tr>
<td></td>
<td>- Biophysical composition index</td>
<td>- Soil moisture / soil water content</td>
</tr>
<tr>
<td>Configurational (Landscape metrics)*</td>
<td>- Percentage of landscape</td>
<td>- Largest patch index</td>
</tr>
<tr>
<td></td>
<td>- Patch area</td>
<td>- Edge density</td>
</tr>
<tr>
<td></td>
<td>- Patch density</td>
<td>- Landscape shape index</td>
</tr>
<tr>
<td></td>
<td>- Number of patches</td>
<td>- Mean patch area</td>
</tr>
<tr>
<td></td>
<td>- Mean patch size</td>
<td>- Perimeter-area ratio</td>
</tr>
<tr>
<td></td>
<td>- Mean patch shape index</td>
<td>- Aggregation index</td>
</tr>
<tr>
<td>INT. Climatological</td>
<td>- Rainfall and cloud cover</td>
<td>- Wind direction (Vd)</td>
</tr>
<tr>
<td></td>
<td>- Solar radiation</td>
<td>- Wind velocity (Vr)</td>
</tr>
<tr>
<td>Morphological</td>
<td>- Aspect ratio (H/W)</td>
<td>- Building heights and altitude</td>
</tr>
<tr>
<td></td>
<td>- Sky view factor (SVF)</td>
<td>- Coastal proximity</td>
</tr>
</tbody>
</table>

*Based on [7, 8, 10, 14, 15, 32, 33] and calculated with FRAGSTATS (McGarigal et al. [34]) and ArcGIS®.

Remotely sensed spectral imagery has been used to identify different land cover fractions and to determine the abundance or amount of vegetation [5, 24, 35]. The number of spectral bands ranges from limited in the case of multispectral imagery (e.g. SPOT and Landsat with 4-8 bands) to very large as hyperspectral data (e.g. AVIRIS with 224 bands). The larger the number of spectral bands, the more the amount of detail and information that can be captured; however, this may increase the costs and time for acquisition, the difficulty of image processing, and the data redundancy between bands [24, 35]. Well-known vegetation indices such as the Normalised Difference Vegetation Index (NDVI) and LAI have been calculated from remotely sensed spectral imagery using software such as ENVI, ERDAS and ArcGIS [24]. Whereas NDVI measures the visible and near-infrared reflectance from vegetation canopy to represent the vigour (healthiness, greenness) of vegetation, LAI provides areal estimations of the total amount of leaves which is related to the interception of solar radiation or shading potential [24, 36]. Both indices serve to calculate the proportion between vegetation and impervious surface fractions and are indicators of ecological function and photosynthetic activity; however, their relationship is nonlinear. The use of vegetation indices raises some issues because they are highly dynamic; depending upon factors such as plant phenology, type of species and methods of estimation (direct and indirect) [36].

LiDAR (light detection and ranging) imagery provides highly accurate three-dimensional information such as terrain elevation, building footprints, and vegetation heights. LiDAR has been used to calculate sky view factors (SVF) or aspect ratios, digital elevation models (DEM), digital surfaces models (DSM), and to extract different vegetation surface fractions (trees, shrubs and low plants) [2, 4, 24, 37–39].

Ground-based monitoring can be implemented to provide auxiliary information and to control the accuracy and precision of remotely sensed imagery [4]; however, only one third of the literature combined in-situ measurements with remote sensing. On-ground monitoring has been mostly conducted using fixed meteorological stations placed at pedestrian levels (1.5 - 2 metres above the ground). These measured air temperature, surface radiant temperature, relative humidity, wind velocity and direction, solar radiation and rainfall. To increase the spatial coverage of in-situ measurements, a few studies employed mobile stations or transects using cars or bicycles [2, 4, 39–42]. This technique requires GPS devices to register the exact time and location to estimate the time lag between measurements over the duration of missions [24]. Experts strongly recommend that ground-based measurements
should be deployed simultaneously with data collection from satellites or aircraft to establish better correlations/validations between surface and air temperatures [2, 4, 5, 24].

3.3. Spatial and temporal resolutions

Spatial resolution relates to the level of detail in an image that is defined by the smallest possible feature captured per pixel. Evidence shows that the higher the spatial resolution, the higher the accuracy and precision of results [35]. Three main scales –meso, local and micro– have been identified for climatic studies [43, 44]. The identification of an appropriate scale depends on the extension and type of climatic phenomena to be measured; for instance, meso scale focuses on large urban regions or whole cities, local scale on neighbourhoods and precincts, and micro scale on street canyons and individual structures [44]. Many remotely-sensed projects have been conducted at meso scale and have used freely accessible satellite images of low (AVHRR, MODIS, FY-2C) and medium (Landsat, SPOT and ASTER) spatial resolutions [35] (See Table 2). Despite the advent of very high resolution spaceborne (IKONOS, QuickBird) and airborne imagery (AVIRIS, TASI, HySpex, LiDAR, etc.), less research has been conducted at local and micro scale as the acquisition of this data is costly for most users [2, 4, 35, 45]. However, one of the greatest advantage of airborne remote sensing is the high level of detail [45].

Temporal resolution refers to the amount of time between measurements; an aspect of great importance since vegetation phenology entails functional and structural changes –especially in spring and autumn– that can lead to incorrect estimations [35]. Satellite temporal resolution is defined as the overpass time between two successive images over the same location [35]. Even though spaceborne remote sensing allows time-series analysis, images are occasionally blurred by clouds or poor weather conditions [35]. Extreme temperature and heatwaves conditions mostly occur in summer which has been defined as the preferable season for UHI investigations, and such observations should be conducted at particular times of the day (noon) and night (pre-dawn) [4, 24]. Whereas satellites are constrained in capturing surfaces at optimum times, airborne remote sensing offers a high level of control and flexibility to schedule flights to target specific phenomena [4, 24, 35]. Nevertheless, revisit times are reduced to every 1 to 5 years due to the complex logistics and high costs, which hampers multi-temporal analyses [35]. Conversely, ground-based measurements offer high temporal resolutions, but lack broad spatial coverage [5]. Table 2 summarises the spatial and temporal resolution of common satellite and airborne-based data products.

3.4. Major methods of analysis

The statistical analysis of the relationship between LST and vegetation abundance (NDVI, LAI and fractional surface covers) has been extensively used to analyse the thermal profiles of GI [5]. Evapotranspiration (ET) is another key parameter strongly correlated to vegetation indices that combines the transpiration of plants and evaporation of soils as an indicator of the cooling potential of GI [36]. Nonetheless, the relationship between ET and LST has not been fully investigated because it is difficult to quantify, especially in highly heterogeneous urban settings and at very fine scales [5, 46, 47]. Nouri et al. [46, 47] have reviewed general remote sensing approaches to predict ET from complex vegetated surfaces.

The study of the geometrical and physical properties of urban surfaces and built forms –usually represented by land-use/land-cover (LULC) types– has also served to explain the spatial patterns of LST. Shadows, misclassifications and object occlusion are some of the issues caused when three-dimensional information is derived from two-dimensional imagery that may lead to errors and underestimations [35]. Nevertheless, LiDAR data that focuses on geometrical characteristics can be used in conjunction with spectral imagery for building, surface and vegetation classification and extraction [2, 4, 35]. Weng et al. [5] has noted that simple correlations between LST and LULC are insufficient and that more quantitative and physically-based rather than qualitative descriptors of surfaces should be used in future research. Furthermore, at fine-scales LULC are not able to consider the spatial heterogeneity of vegetated and non-vegetated elements on which thermal cooling depends upon [48–50].

The recent advent of satellite imagery enables calculating spatial autocorrelation indices such as the local Moran’s I [51] and the FRAGSTATS landscape metrics [34] to examine the role and influence of greenspaces’ geometry and distribution on their cooling effects and the spatial patterns of LST. Such effects were analysed by several studies using statistical and predictive models, namely spatial auto-regression, multi-variate linear
regression, ANOVA, ordinary least squares (OLS) and Pearson correlation matrix. However, investigations have been mostly conducted at a coarse level and have not fully considered the heterogeneity of greenspaces.

The use of these approaches raises some additional issues as remotely sensed imagery combines the properties, interactions and temperatures of ground surfaces, tree canopy and buildings, and such combinations are nonlinear [5]. Therefore, a three-dimensional analysis of vegetation layers, surfaces and built-up forms is necessary because plants contribute to the modification of temperature, shading, evapotranspiration and air flow differently from soils and buildings [25, 44, 52]. In summary, the integration of thermal, spectral and LiDAR data is strongly recommended for a more comprehensive analysis.

Table 2. Summary of spaceborne and airborne data sources used by reviewed literature.

<table>
<thead>
<tr>
<th>Data product</th>
<th>Imagery</th>
<th>Acquisition</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
<th># Studies*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low resolution satellite imagery (>100 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVHRR</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Free</td>
<td>1100m</td>
<td>Twice daily</td>
<td>2</td>
</tr>
<tr>
<td>MODIS</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Free</td>
<td>250, 500, 1000m</td>
<td>Daily at 10h30 and 13h30 (local time)</td>
<td>13</td>
</tr>
<tr>
<td>FY-2C (FengYun-2)</td>
<td>VIS, TIR, WV</td>
<td>Free</td>
<td>1250, 1440, 5000, 5760m</td>
<td>Every 30 minutes</td>
<td>1</td>
</tr>
<tr>
<td>Medium resolution satellite imagery (10-100 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landsat 5TM</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Free</td>
<td>30, 120m</td>
<td>Every 16 days at 9h45 (local time)</td>
<td>21</td>
</tr>
<tr>
<td>Landsat 7ETM+</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Free</td>
<td>15, 30, 60m</td>
<td>Every 16 days at 10h00 (local time)</td>
<td>15</td>
</tr>
<tr>
<td>Landsat 8</td>
<td>VIS, NIR, SWIR, TIR, PAN</td>
<td>Free</td>
<td>15, 30, 60, 100 m</td>
<td>Every 16 days at 10h00 (local time)</td>
<td>2</td>
</tr>
<tr>
<td>SPOT</td>
<td>VIS, NIR, SWIR, PAN</td>
<td>Purchased</td>
<td>2.5, 10, 20m</td>
<td>Every 1-3 days</td>
<td>3</td>
</tr>
<tr>
<td>ASTER</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Free & purchased</td>
<td>15, 30, 90m</td>
<td>Daily at 10h30 (local time)</td>
<td>8</td>
</tr>
<tr>
<td>High resolution satellite imagery (<10 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKONOS</td>
<td>VIS, NIR, PAN</td>
<td>Purchased</td>
<td>0.8, 4m</td>
<td>Every 3 days</td>
<td>6</td>
</tr>
<tr>
<td>World-View 2</td>
<td>NIR, TIR, PAN</td>
<td>Purchased</td>
<td>0.5, 1.8, 2.4 m</td>
<td>Every 1-2 days</td>
<td>1</td>
</tr>
<tr>
<td>QuickBird</td>
<td>VIS, NIR, PAN</td>
<td>Purchased</td>
<td>0.6, 2.4, 2.6 m</td>
<td>Every 2-6 days at 10h30 (local time) & on demand</td>
<td>7</td>
</tr>
<tr>
<td>Airborne imagery (resolutions depending on sensors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td>VIS, NIR, SWIR, TIR</td>
<td>Purchased</td>
<td>7m, 50 m</td>
<td>On demand</td>
<td>2</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>VIS, NIR, SWIR</td>
<td>Purchased</td>
<td>4 m, 20 m</td>
<td>On demand</td>
<td>1</td>
</tr>
<tr>
<td>TASI</td>
<td>TIR</td>
<td>Purchased</td>
<td>0.6 m, 1.25 m</td>
<td>On demand</td>
<td>1</td>
</tr>
<tr>
<td>SASI</td>
<td>SWIR</td>
<td>Purchased</td>
<td>1.25 m</td>
<td>On demand</td>
<td>1</td>
</tr>
<tr>
<td>DAMS</td>
<td>TIR, NIR, UV</td>
<td>Purchased</td>
<td>5 m</td>
<td>On demand</td>
<td>1</td>
</tr>
<tr>
<td>HySpex</td>
<td>VIS, NIR</td>
<td>Purchased</td>
<td>0.5 m, < 1m</td>
<td>On demand</td>
<td>2</td>
</tr>
<tr>
<td>Infratec</td>
<td>TIR</td>
<td>Purchased</td>
<td>0.7 m</td>
<td>On demand</td>
<td>1</td>
</tr>
<tr>
<td>FLIR</td>
<td>TIR</td>
<td>Purchased</td>
<td>0.5 m</td>
<td>On demand</td>
<td>2</td>
</tr>
</tbody>
</table>

Adapted from Irger[24] & Weng [35]. NIR Near infrared, PAN Panchromatic, SWIR Short-wave infrared, TIR Thermal infrared, UV Ultraviolet, VIS Visible light, WV Water vapor. * Some studies used more than one data product at a time.

4. Developing a new methodological framework

4.1. Data sources and calculation of variables

Based on the reviewed literature, we recommend the combination of airborne remote sensing and ground measurements to collect the relevant information necessary for the thermal evaluation of GI at local and micro scale. Figure 1 presents a schematic overview of the most essential dependent, independent and intervening variables (as per Table 1) and how these can be derived from data sources.

Among all variables the estimation of evapotranspiration (ET) in urban contexts remains unexplored since most research has been conducted in homogeneous environments, particularly in agricultural studies. Also, ET estimations are challenging due to the highly diverse conditions of plant species, canopy covers, microclimates, and the presence of impervious surfaces [46]. For the present framework, we will incorporate Nouri et al. [53, 54] remote sensing approach –based on the FAO-56 Penman-Monteith method [55]– to quantify daily ET using
vegetation indices (NDVI/EVI) derived from spectral imagery and reference ET obtained from meteorological data (either mobile or fixed stations) (See Figure 1).

The calculation of configurational parameters will serve to determine the level of aggregation or clumpiness of vegetation features (especially trees). These landscape metrics can be calculated once vegetation features have been extracted from LiDAR data and validated against NDVI values (See Figure 1).

Fig. 1. Schematic overview of essential dependent (red colour), independent (green colour) and intervening (blue colour) variables derived from their corresponding data sources (dark grey). (Based on Irger [24]).

4.2. Data acquisition protocols

Following a review of studies [2, 4, 24], we propose a set of specifications for data acquisition that can be applied irrespective of geographic locations; even so, flight protocols depend on several temporal and meteorological considerations. Most severe UHIs are likely to happen during summer after several days of continuous heatwave; however, such warming conditions may be more desirable in winter [24]. The best time to study the thermal profiles of vegetation and SUHIs is during the day, especially around noon giving the high angle and intensity of the sun which enables capturing the maximum surface temperatures with minimal shading effects. Contrastingly, UHIs within the urban canopy layer are usually more pronounced at night-time, especially in the early morning (pre-dawn) when surfaces have lost the maximum amount of radiative energy and the urban-rural thermal differences are greatest [2, 4, 24]. Also, surface to air temperature correlations are stronger at night giving the lack of building shade and traffic flows contributing to the anthropogenic heat [4].

To investigate the capacity of GI to mitigate excess heat, flights should preferably be undertaken during periods of two to three consecutive hot days and missions should be brief (<60 minutes) to avoid large temperature differences between locations [2, 4]. Nevertheless, some degree of flexibility when allocating the flight times and duration is needed to reduce the risk of missing suitable opportunities. The acquisition of LiDAR data can be carried
out either simultaneously or separately from the TIR and spectral imagery; however, this must correspond to the same period/season to prevent changes caused by the vegetation phenology.

Successful data collection requires suitable meteorological conditions. Clear skies are essential since cloud cover may obstruct the aircraft’s sensors. Cloudy skies hinder capturing accurate thermal imagery by irregularly shading the ground at daytime, and preventing long-wave radiative cooling at night-time. Similarly, low wind speeds are preferable as high velocities increase surface cooling effects, reduce atmospheric stability, and cause air turbulence [4, 24, 56], affecting the accuracy of thermal data and preventing optimal correlations between air and surface temperatures. Another crucial factor is that study areas must not have experienced any precipitation three to five days prior to the flights as this can alter ET estimations and distort surface temperatures.

The type of sensors and altitude of flights are important to determine the spatial resolution of imagery that will depend on the type of analysis. We recommend to use very high resolution imagery (<2m) for the thermal analysis of GI at local and micro scales. Additionally, airborne-based measurements can be complemented by concurrent ground-based monitoring [2, 4]. Mobile transects can be used to obtain a good spatial coverage of canopy layer conditions and should include a GPS tracker, meanwhile fixed meteorological stations can be used if higher temporal resolutions are required. In both cases, devices must be placed between one to two metres above the ground.

4.3. Workflow and implementation

In this section we present a GIS-based workflow for the implementation of our methodological framework (Figure 2) that draws on a method developed by Irger [24]. It is necessary to recognise the critical influence that intervening variables have on the thermal performance of GI and the variability of UHIs. Hence, measurements must be conducted in calm, clear and dry conditions to reduce the moderating effects of wind (especially sea breezes), cloud cover and rainfall.

An appropriate classification of urban form is also necessary for a meaningful comparison of GI typologies by taking into account the spatial and structural disparities of urban landscapes. We recommend to apply the LCZs proposed by Stewart and Oke [49, 52], a standardised scheme specifically intended to classify observation sites for UHI studies based on climate-relevant surface properties. Protocols for automated classification of LCZs using remote sensing data have been applied by the World Urban Database and Access Portal Tools (WUDAPT) initiative [57–59] and several studies [24, 60–63]. However, further work is still needed to improve the accuracy of classifications and to integrate three-dimensional auxiliary data such as LiDAR. Furthermore, research has demonstrated that the use of grid cells with 100 metres of spacing provide optimal results for morphological classifications without compromising the amount of detail or causing landscape fragmentation [24, 57].

Previous research has introduced a new GI typology to support urban microclimate studies [25, 50] that is incorporated into this framework for the classification of GI according to functional, structural and configurational attributes. To enable a more comprehensive and finer analysis of GI, LCZs must be sub-divided into grids of 50 metres of length and width and subsequently classified into corresponding typologies. Then, all the independent variables (e.g. NDVI, LAI and ET) summarised in Figure 1 have to be quantified and assigned to each cell by calculating their mean values.

The last step involves the computation of LST that should be corrected with spectral emissivity values as described in section 3.2 and validated against ground-based air temperatures. Mean LST values have to be assigned to each GI typology for subsequent spatial and statistical correlation between variables, and for the elaboration of predictive numerical models using any of the methods mentioned in section 3.4. The schematic representation of the proposed framework with a list of relevant data sources and variables are presented in Figure 2.

5. Conclusions

Remote sensing methods have mostly focused on mapping and quantifying the cooling effects of GI at meso scales using satellite imagery; however, further research at local and micro scales is still required. To respond to this gap, this paper overviews recent literature and presents a methodological framework for a more precise and accurate
evaluation of the thermal profiles of different GI typologies using a combination of airborne remote sensing and ground-monitoring. The proposed framework includes the following steps: (a) the control of intervening variables and the moderating effects of urban morphology through the classification of sites using the LCZ scheme; (b) the sub-classification of LCZs into a newly developed GI typology and subsequent estimation of functional indicators (NDVI, LAI and ET), structural indicators (surface cover fractions) and landscape metrics; and (c) the statistical correlations between GI-derived variables and LST to predict particular microclimatic outcomes from each typology. This is a preliminary methodology that remains provisional since it is part of an ongoing research. Further stages will concentrate on developing specific GIS-based workflows for testing and validating it using Sydney and Melbourne as case studies.

Fig. 2. Schematic representation of the methodological framework and list of relevant data sources and variables.

Acknowledgements

This paper is possible thanks to the financial support provided by the Faculty of Built Environment, University of New South Wales (UNSW-Australia) and the Cooperative Research Centre for Low Carbon Living (CRC-LCL).

References

Stewart, I. D. Redefining the Urban Heat Island. Doctor of Philosophy - PhD, University of British Columbia. 2011.

